

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Shri Vile Parle Kelavani Mandal's

Dwarkadas J. Sanghvi College of Engineering

(Autonomous College Affiliated to the University of Mumbai)

Scheme and detailed syllabus DJ19

of

Honors Degree Program

in

Smart Computing

With effect from the Academic Year: 2023-2024

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Scheme for Honors in Smart Computing: Department of Computer Science and Engineering (IoT and CyberSecurity with Blockchain Technology) (Academic Year 2023-2024)

	Course Code	Course	Teaching Scheme(hrs)			Continuous Assessment			Semester End Assessment (B)					Aggregate (A+B)		
Sr			Th	P	Т	Cred its	Th	T/W	Tota l CA (A)	Th	0	P	O &P	Total SEA (B)	, , ,	Total Credits
	SEN	M V											15			
1	DJ19ICCHN1C1	Smart Technologies	4	1.	4	4	25	-	25	75				75	100	4
	SEN	MVI				191								No.		
2	DJ19ICCHN1C2	Cognitive Computing	4	6)	Y	4	25	0	25	75			1	75	100	4
3	DJ19ICCHN1L2	Cognitive Computing Laboratory		2	1	1	0	25	25				25	25	50	1
	SEM	I VII			- 1									600	1	
4	DJ19ICCHN1C3	IoT Data Analytics	4			4	25		25	75			E	75	100	4
5	DJ19ICCHN1L3	IoT Data Analytics Laboratory		2		1		25	25				25	25	50	1
	SEM	VIII		Tr	i de			20					1			
7	DJ19ICCHN1C4	Social CyberSecurity	4	- F	IL	4	25	22	25	75	_	E		75	100	4
		Total	16	4	0	18	100	50	150	300	0	0	50	350	500	18

Prepared by Checked by Head of the Department Vice Principal Principal

Continuous Assessment (A):

Course	Assessment Tools	Marks	Time (hrs.)	
	One Term test (based on 40 % syllabus)	25 each	1	
Theory	Second Term test (next 40 % syllabus) / presentation / assignment / course project / group discussion / any other	(Avg.25)		
Audit course	Performance in the assignments / quiz / power point presentation / poster presentation / group project / any other tool.		as applicable	
Laboratory	Performance in the laboratory and documentation	25		
Tutorial	Performance in each tutorial & / assignment	25		
Laboratory &Tutorial	Performance in the laboratory and tutorial.	25		

Semester End Assessment (B):

Course	Assessment Tools	Marks	Time (hrs.)
Theory /	Written paper based on the entire syllabus	75	
* Computer based	* Computer based assessment in the college premises	75	3
Oral	Questions based on the entire syllabus	25	as applicable
Practical	the output / results obtained	25	2
Oral & Practical	Project based courses - Performance of the practical assigned during the examination and the output / results obtained Based on the practical performed during the examination and on the entire syllabus.	as per the scheme	2

Honors in Smart Computing

T. Y. B.Tech.

Semester: V

Program: B.Tech. CSE in IoT and Cyber Security withBlockchain Technolog

Pre-requisite:

- 1. Introduction to IoT
- 2. Computer Networks

Objectives:

- 1. To understand the fundamental principles and concepts of smart technologies.
- 2. To identify different types of smart technologies and their applications.
- 3. Analyze the impact of smart technologies on society, economy, and environment.
- 4. Develop critical thinking and problem-solving skills related to smart technologies

Outcomes: On completion of the course, learner will be able to:

- 1. Demonstrate the knowledge of design of smart computing and its applications.
- 2. Describe different types of smart technologies
- 3. Explore IoT, artificial intelligence (AI) and machine learning (ML) techniques used in smart technologies.
- 4. Analyze and evaluate real-world case studies of smart technology implementations in various domains.

Detail Unit	Description	Duration
1	Introduction to Smart Technologies	Duration
	Definition and characteristics of smart technologies, Evolution of smart technologies, Overview of smart technologies and their significance in smart computing, Key components of smart systems, The Five A's Of Smart Computing, Examples of smart computing, Challenges and opportunities in smart technologies, Emerging trends in smart technologies	06
2	Smart Devices and Services: Smart Devices and Service properties, Smart mobile devices and Users, Mobile code, Smart Card Devices and Networks, Service Architecture	07

	Models. Service Provision Lifecycle. Virtual Machines and Operating Systems, OS for Mobile Computers and Communicator Devices.	
3	Ubiquitous Computing: Concept of Ubiquitous Computing and Advantages, Ubiquitous Computing Applications and Scope, Properties of Ubiquitous Computing, Modelling the Key Ubiquitous Computing Properties. Ubiquitous System Environment Interaction. Architectural Design for UbiCom-Systems: Smart DEI Model.	07
4	Integration of Smart Technologies: Internet of Things (IoT) and its role in smart computing, Wearable and Personal Smart Devices, AI and ML techniques for smart technologies, Integration of smart devices and systems with existing infrastructure,	04
5	Smart Technologies applications Smart Cities and Urban Infrastructure: Smart energy management and sustainable infrastructure, Smart transportation and mobility solutions, Case studies of successful smart city implementations Artificial Intelligence (AI) in Smart Technology: Al applications in smart computing, Natural language processing and voice recognition in smart devices, AI-based decision-making and automation in smart technology Smart Technologies in Energy: Smart grids and energy management, Renewable energy integration, Sustainable cities and smart buildings	07
6	Future Trends and Innovations: Edge computing and fog computing for smart systems, Blockchain technology for secure and decentralized smart systems, Cloud computing for smart technologies, Analysis of real-world smart technology implementations	08
	Total	39

Books Recommended:

Text Books

- 1. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia" by Anthony M. Townsend
- 2. "Smart Sensors for Industrial Applications" by Krzysztof Iniewski
- 3. Smart Phone and Next Generation Mobile Computing (Morgan Kaufmann Series in Networking), PeiZheng, Lionel Ni
- 4. Stefan Poslad, Ubiquitous Computing, Wiley, Student Edition, ISBN:9788126527335John Krumm, Ubiquitous Computing Fundamentals
- 5. ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, ISBN: 0: 0996025510, 13: 978-0996025515.

Reference Books

- 1. Principles Of Mobile Computing, Hansmann, LotharMerk, Martin Niclous, Stober
- 2. Mobile Computing, Tomasz Imielinski, Springer
- 3. Laurence T. Yeng, EviSyukur and Seng W. Loke, Handbook on Mobile and UbiquitousComputing, CRC, 2nd Edition, ISBN: 9781439848111
- 4 Smart Internet of things projects Agus Kurniawan Packt Sep 2016 978-1-78646-651-8 2 The Internet of Things Key Olivier Willy Publication 2nd Edition 978-
- 5. "The Future of the Professions: How Technology Will Transform the Work of Human Experts" by Richard Susskind and Daniel Susskind
- 6. "Smart Cities: Governing, Modelling, and Analysing the Transition" by Mark Deakin and Husam Al Waer
- 7. "Smart Grids: Infrastructure, Technology, and Solutions" by Stuart Borlase

Evaluation Scheme:

Semester End Examination (A):

Theory:

- 1. Question paper based on the entire syllabus will comprise of 5 questions (All compulsory, but with internal choice as appropriate), each carrying 15 marks, total summing up to 75 marks.
- 2. Total duration allotted for writing the paper is 3 hrs.

Continuous Assessment (B):

Theory:

- 1. Two term tests of 25 marks each will be conducted during the semester out of which; one will be a compulsory term test (on minimum 02 Modules) and the other can either be a term test or an assignment on live problems or a course project.
- 2. Total duration allotted for writing each of the paper is 1 hr.
- 3. Average of the marks scored in both the two tests will be considered for final grading.

Prepared by Checked by Head of the Department Principal